
Abstract In order to enumerate nonrigid isomers, we
have proposed the proligand approach, where extended
sphericity indices of k-cycles have been defined accord-
ing to the enantiospheric, homospheric, or hemispheric
nature of each k-cycle. Then, cycle indices with chirality
fittingness have been defined so as to enumerate nonrigid
stereoisomers with chiral and achiral ligands. Results of
the proligand approach using tetramethylmethane as an
example have been compared with those based on
Pólya’s corona. Thereby, Pólya’s corona is concluded to
be concerned with graphs, but not with chemical struc-
tures, where it is incapable of treating chiral ligands
properly.

Keywords: Cycle index—Chirality fittingness—Spheric-
ity index—Pólya’s corona

1 Introduction

In a previous work [1], we pointed out that Pólya’s
theorem [2,3] is insufficient to deal with chemical
structures (or stereoisomers) in which both achiral and
chiral ligands are taken into consideration. In other
words, Pólya’s theorem is concerned with graphs, but
not with chemical structures, where it treats atoms only
(or at most achiral ligands) and incapable of treating
chiral ligands properly. In fact, many graph-theoretical
studies based on Pólya’s theorem have been conducted
within this limitation, where each object occupying a
vertex (node) of a graph has been implicitly considered
to be structureless, as implicated in books [4,5,6] and
reviews [7,8,9].

The insufficiency of Pólya’s theorem, in particular,
has become obvious in its application to teterahedral

molecules having the formula CABp�p, in which A and B
are achiral ligands and p and �p represent a pair of
enantiomeric chiral ligands [10]. The insufficiency,
however, may be overlooked unconsciously or neglected
as a trivial thing, unless the abstract meaning of A, B, p,
and �p is formulated in terms of proligands and promol-
ecules, where such proligands are regarded as being
structureless but have achirality/chirality [11]. This sit-
uation has been critically discussed in terms of ‘‘con-
ceptual revolution from graphs to chemical structures’’
[10].

After introducing the concepts of proligand and
promolecule, we can see that the insufficiency of Pólya’s
theorem becomes clearer when such proligands are re-
placed by actual ligands so as to convert a promolecule
into a nonrigid molecule. Let us consider CABp�p in
which each of A, B, p, and �p is derived from a methyl
ligand (a methyl group). By placing A = CX2Y , B =
CXY2, p = R-CXYZ, and �p = S-C XYZ, we obtain two
achiral molecules (1 and 2), which are diastereomeric to
each other, as shown in the top row of Fig. 1.

On the other hand, graph-theoretical approaches are
incapable of discriminating between the two molecules
(1 and 2) so as to recognize only one molecule (3) as a
graph. In fact, Pólya’s corona that is an extention of
Pólya’s theorem for treating such nonrigid isomers as 3
does not discriminate between R-CXYZ and S-CXYZ
during its enumeration process [2,3]. This means that
Pólya’s corona lacks the concept of proligands (espe-
cially chiral proligands such as p and �p).

In this paper, we will first review Pólya’s corona
to show the previously described insufficiency by using
an enumeration problem in which the four methyl li-
gands of tetramethylmethane [2,2-dimethylpropane,
C(CH3)4] are replaced by a set of substituted methyl
ligands. Then, we will propose a new approach based on
the concepts of proligand and promolecule (called here
the proligand approach), where both achiral and chiral
(pro)ligands are taken into consideration. Thereby, we
will show the superiority of our approach over Pólya’s
corona by using the same enumeration problem as an
example.Correspondence to: S. Fujita
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2 Pólya’s corona

Pólya’s corona was introduced in his famous article [2,3]
to solve enumeration problems of nonrigid molecules
due to rotations around bonds. This is essentially
equivalent to the concept of wreath products, which
was later used to count stereoisomers and positional
isomers in a generalized wreath product method [12].
These methods and related topics have been reviewed
extensively in books [3,5] and reviews [7,9,13,14]. The
present section is devoted to discussion on the scope and
limitations of Pólya’s corona by using derivatives of
tetramethylmethane as an example.

First we find the extended cycle index (CI) of a methyl
ligand. Since the three hydrogens of a methyl ligand are
controlled by a permutation group represented by

fð1Þð2Þð3Þ; ð1 3 2Þ; ð1 2 3Þ;
ð1 2Þð3Þ; ð1 3Þð2Þ; ð1Þð2 3Þg; ð1Þ
we obtain the corresponding CI:

w1 ¼
1

6
s31 þ

1

3
s3 þ

1

2
s1s2; ð2Þ

To extend this CI to the case of tetramethylmethane as a
corona, we introduce the following corona wk on the
basis of Eq. (2):

wk ¼
1

6
s3k þ

1

3
s3k þ

1

2
sks2k; ð3Þ

where k represents a multiplicity factor (1—4) for
calculating the CI uðwÞ of tetramethylmethane:

uðwkÞ ¼
1

24
w4
1 þ

1

8
w2
2 þ

1

4
w2
1w2 þ

1

3
w1w3 þ

1

4
w4: ð4Þ

Thus, four methyls, which are the same or different
according to the values of k in Eq. (3), are substituted for
the four positions of methane. Note that the four
positions of methane are controled by the symmetric
group of degree 4 so as to give Eq. (4). When a set of
ligand is selected from fX;Y;Zg, the corresponding
ligand inventory is obtained as follows:

sd ¼ X d þ Y d þ Zd : ð5Þ
After introducing Eq (3) into Eq. (4), the ligands
inventory (Eq. 5) is introduced into the resulting
polynomial concerning sd so as to give a generating
function (f ), as shown in Eq. (6).

f ¼ ðX 12 þ Y 12 þ Z12Þ
þ ðX 11Y þ XY 11 þ X 11Z þ � � �Þ
þ 2ðX 10Y 2 þ X 2Y 10 þ X 10Z2 þ � � �Þ
þ 3ðX 9Y 3 þ X 3Y 9 þ X 3Z9 þ � � �Þ
þ 4ðX 8Y 4 þ X 4Y 8 þ X 8Z4 þ � � �Þ
þ 4ðX 7Y 5 þ X 5Y 7 þ X 7Z5 þ � � �Þ
þ 5ðX 6Y 6 þ X 6Z6 þ Y 6Z6Þ
þ 2ðX 10YZ þ XYZ10 þ XY 10ZÞ
þ 4ðX 9Y 2Z þ X 2Y 9Z þ XY 9Z2 þ � � �Þ
þ 6ðX 8Y 3Z þ X 3Y 8Z þ X 8YZ3 þ � � �Þ
þ 8ðX 8Y 2Z2 þ X 2Y 8Z2 þ X 2Y 2Z8Þ
þ 8ðX 7Y 4Z þ X 4Y 7Z þ XY 7Z4 þ � � �Þ
þ 12ðX 7Y 3Z2 þ X 7Y 2Z3 þ X 3Y 7Z2 þ � � �Þ
þ 9ðX 6Y 5Z þ X 5Y 6Z þ XY 6Z5 þ � � �Þ
þ 16ðX 6Y 4Z2 þ X 4Y 6Z2 þ X 6Y 2Z4 þ � � �Þ
þ 18ðX 6Y 3Z3 þ X 3Y 6Z3 þ X 3Y 3Z6Þ
þ 16ðX 5Y 5Z2 þ X 2Y 5Z5 þ X 5Y 2Z5Þ
þ 21ðX 5Y 4Z3 þ X 4Y 5Z3 þ X 5Y 3Z4 þ � � �Þ
þ 25X 4Y 4Z4 ð6Þ

The coefficient of each term X xY yZz (xþ y þ z ¼ 12) in
Eq. (6) represents the number of isomers (as graphs)
with x of X , y of Y , and z of Z. It should be noted that the
coefficients collected in Eq. (6) were obtained by using
Pólya’s corona.

To show the meaning of the intermediate equation
(Eq. 2), the ligand inventory (Eq. 5) is introduced into
Eq. (2) so as to produce

w1 ¼ X 3 þ X 2Y þ XY 2 þ Y 3 þ X 2Z þ XYZ

þ Y 2Z þ XZ2 þ YZ2 þ Z3: ð7Þ

Fig. 1 Two molecules for chemical structure (1 and 2) versus one
molecule for graph (3). The symbols X, Y, and Z represent
appropriate atoms. Each encircled segment in 1 or 2 represents a
substituted methyl ligand, which corresponds to an achiral ligand
(A or B) or a chiral ligand (p or �p). Each encircled segment in 3
represents a substituted methyl ligand as a graph.
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Each term on the right-hand side of Eq. (7) shows the
type of ligand to be considered. Moreover, its coefficient
represents its number to be calculated, although each
coefficient is equal to 1 in this case. In particular, the
term XYZ in Eq. (7) corresponds to a chiral ligand
CXYZ, where the value 1 of the coefficient of the term
XYZ shows that R-CXYZ and S-CXYZ are equalized as
one graph.

3 Proligand approach

The present approach is based on the concepts of
proligand and promolecule [11], where the replacement
of proligands by usual ligands converts a promolecule
into a molecule. For the sake of convenience, the present
approach is called the proligand approach.

3.1 Enumeration of chiral and achiral Ligands

A ligand for substituting for a proligand can be derived
from an appropriate ligand skeleton which has n
substitution positions. Let H be the point group of a
ligand skeleton. Then the substitution positions are
governed by a sum of coset representations, i.e.,P

i biHð=HiÞ, where Hi represents a subgroup of H
and bi represents the multiplicity of each coset repre-
sentation. The sum can be regarded as a permutation
group Ĥ of degree n. In this paper, we will mainly
consider such faithful cases. But the discussions in this
paper hold true for unfaithful cases in which the order of
Ĥ is not always equal to the order of H.

An element Ĥ of Ĥ is called a proper element if it
corresponds to a proper rotation of H, and is called an
improper element if it corresponds to an improper rota-
tion of H. Such an improper element is represented by a
product of cycles with overlines, which emphasize the
change of the chirality of each ligand to the opposite
chirality.

Let the cycle decomposition of an improper element
Ĥ of Ĥ be represented by the number mkðĤÞ of k-cycles,
where we place k ¼ 1; 2; . . . ; n. If k is even, a k-cycle for
an improper element is called an enantiospheric k-cycle
and is ascribed to a sphericity index ck. If k is odd, a
k-cycle for an improper element is called a homospheric
k-cycle and is ascribed to a sphericity index ak. Whether
k is even or odd, a k-cycle for a proper element is called a
hemispheric k-cycle and is ascribed to a sphericity index
bk. Thereby, the sphericity indices ak, ck, and bk control
modes of ligand packing, which are equivalent to those
due to chirality fittingness proposed (CF) previously
[1,15]. Thereby, we define a CI with (CI-CF) by using the
sphericity indices ak, ck, and bk.

Let Ĥ be a sum of coset representations of a point
group H, as described earlier. An element Ĥ of Ĥ is a
permutation of degree n, which is represented by a cycle
decomposition involving the number mkðĤÞ of k-cycles
[
Pn

k¼1 kmkðĤÞ ¼ n]. Each of the k-cycles corresponds to a
sphericity index $k, where $k is ak if Ĥ is an improper

element and k is odd, $k is ck if Ĥ is an improper element
and k is even, and $k is bk if Ĥ is a proper element.
Hence, the element Ĥ corresponds to a product of
sphericity indices $

m1ðĤÞ
1 $

m2ðĤÞ
2 � � � $mnðĤÞ

n . Thereby, a CI-CF
for the present case is defined as follows:

CI-CFðĤ ; $dÞ ¼
1

jĤ j
X

Ĥ2Ĥ

$
m1ðĤÞ
1 $

m2ðĤÞ
2 � � � $mnðĤÞ

n ; ð8Þ

where $d is ad if Ĥ is an improper element and d is odd,
$d is cd if Ĥ is an improper element and d is even, and
$d is bd if Ĥ is a proper element.
Let Ĥ

0
be a sum of coset representations of the

maximum chiral subgroup Ĥ
0
of H. An element Ĥ of Ĥ

0

is a permutation of degree n, which is also an element of
Ĥ.

CI-CFðĤ
0
; bdÞ ¼

1

jĤ
0
j

X

Ĥ2Ĥ
0
bm1ðĤÞ
1 bm2ðĤÞ

2 � � � bmnðĤÞ
n ; ð9Þ

The following theorem for enumerating ligands has
essentially the same meaning as described for the enu-
meration of isomers [10].

Theorem 1. Let Ĥ be a sum of coset representations of a
point group, which governs a set D of n positions. Suppose
that the cycle structure of Ĥð2 ĤÞ is represented by

ð1m1ðĤÞ2m2ðĤÞ � � � nmnðĤÞÞ;
where

Pn
k¼1 kmkðĤÞ ¼ n. Each position of D is occupied by

an achiral or a chiral ligand selected from a set of ligands,

X ¼ fx1; x2; . . . ; xm; p1; p2; . . . ; pm0 ; �p1; �p2; . . . ; �pm0 g;
where each xj represents an achiral ligand and each pair of
pj and �pj represents an enantiomeric pair of chiral ligands.
Consider isomers having h1 of x1; h2 of x2; . . . ;
hm of xm; h01 of p1; h02 of p2; . . . ; h0m0 of pm0 ; and
h001 of �p1; h002 of �p2; . . . h00m0 of �pm0 , where

½h� : h1 þ h2 þ � � � þ hm

þ h01 þ h02 þ � � � þ h0m0

þ h001 þ h002 þ � � � þ h00m0 ¼ n: ð10Þ
Let the symbol Bh denote the number of isomers of such
isomers as having ½h� under the action of Ĥ, where
achiral isomers and enantiomeric pairs are enumerated
combinatorially. Let the symbol B0h denote the number
of isomers of such isomers as having ½h� under the action
of Ĥ

0
, where achiral isomers and chiral isomers (both of

each enantiomer) are enumerated combinatorially. Gen-
erating functions for calculating Bh and B0h are repre-
sented by
X

½h�
Bhx

h1
1 x

h2
2 � � � xhm

m p
h01
1 p

h02
2 � � � p

h0m0
m0 �p

h001
1 �p

h002
2 � � � �p

h00m0
m0

¼ CI-CFðĤ; $dÞ; ð11Þ
X

½h�
B0hx

h1
1 x

h2
2 � � � xhm

m p
h01
1 p

h02
2 � � � p

h0m0
m0 �ph001

1 �ph002
2 � � � �p

h00m0
m0

¼ CI-CFðĤ0; bdÞ; ð12Þ
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where the summation is concerned with all of the partitions
(½h�) shown in Eq. (10). The sphericity indices $d in the CI-
CF are ligand inventories replaced by

ad ¼ xd
1 þ xd

2 þ � � � þ xd
n ð13Þ

cd ¼ xd
1 þ xd

2 þ � � � þ xd
n

þ 2p
d=2
1 �pd=2

1 þ 2p
d=2
2 �pd=2

2 þ � � � þ 2pd=2
n �pd=2

n ; ð14Þ

bd ¼ xd
1 þ xd

2 þ � � � þ xd
n

þ pd
1 þ pd

2 þ � � � þ pd
n þ �pd

1 þ �pd
2 þ � � � þ �pd

n : ð15Þ
For the present purpose of ligand enumeration, we

should place pi ¼ �piði ¼ 1; 2; . . . ; nÞ, because chiral and
achiral ligands should be differentiated but Eqs. (8) and
(9) are considered on the common basis. Thereby, Eqs.
(13), (14) and (15) are simplified as follows:

ad ¼ xd
1 þ xd

2 þ � � � þ xd
n; ð16Þ

cd ¼ xd
1 þ xd

2 þ � � � þ xd
n þ 2ðpd

1 þ pd
2 þ � � � þ pd

nÞ; ð17Þ

bd ¼ xd
1 þ xd

2 þ � � � þ xd
n þ 2ðpd

1 þ pd
2 þ � � � þ pd

nÞ: ð18Þ
Since Eq. (11) gives the number of achiral ligands (A)

plus enantiomeric pairs (C), we can place A + C =
CI-CFðĤ; $dÞ. Since Eq. (12) gives the number of achiral
ligands (A) plus chiral ligands (C) plus their enantiomers
(C), we can place A + 2C = CI-CFðĤ0; bdÞ under the
assumption given by Eqs. (17) and (18). Then we have C
= CI-CFðĤ0; $dÞ � CI-CFðĤ; bdÞ and A =
2CI-CFðĤ; bdÞ � CI-CFðĤ0; bdÞ. When a ligand selected
from the set of such chiral ligands and such achiral
ligands is placed on a position of a given skeleton of
G-symmetry, we should place wðaÞ1 =A,wðcÞ1 =A+2C,
and wðbÞ1 = A + 2C. Hence, we obtain the following
equations:
wðaÞ1 ¼ 2CI-CFðĤ; $dÞ � CI-CFðĤ0; bdÞ; ð19Þ

wðcÞ1 ¼ CI-CFðĤ0; bdÞ; ð20Þ

wðbÞ1 ¼ CI-CFðĤ0; bdÞ; ð21Þ

where wðaÞ1 corresponds to homosphericity, wðcÞ1 corre-
sponds to enantiosphericity, and wðbÞ1 corresponds to
hemisphericity.

It should be noted that wðaÞ1, wðcÞ1, and wðbÞ1 produce
respective generating functions for generating ligand
inventories by introducing Eqs. (16), (17) and (18). As an
example, let us again examine derivatives of tetrame-
thylmethane.

Ĥ ¼ C3vð=CsÞ ¼ fð1Þð2Þð3Þ; ð1 3 2Þ; ð1 2 3Þ;
ð1 2Þð3Þ; ð1 3Þð2Þ; ð1Þð2 3Þg;

Ĥ0 ¼ C3ð=C1Þ ¼ fð1Þð2Þð3Þ; ð1 3 2Þ; ð1 2 3Þg;
where an overbar represents an improper element.
According to Eqs. (8) and (9), we have the correspond-
ing CIs-CF:

CI-CFðĤ; $dÞ ¼
1

6
b3
1 þ

1

3
b3 þ

1

2
a1c2; ð22Þ

CI-CFðĤ0; bdÞ ¼
1

3
b3
1 þ

2

3
b3: ð23Þ

These equations are introduced into Eqs. (19), (20), and
(21) so as to give

wðaÞ1 ¼ a1c2; ð24Þ

wðcÞ1 ¼
1

3
b31 þ

2

3
b3; ð25Þ

and

wðbÞ1 ¼
1

3
b3
1 þ

2

3
b3: ð26Þ

By considering achiral ligands only (X, Y, and Z)
Eqs. (16), (17), and (18) generate the same ligand
inventories:

ad ¼ cd ¼ bd ¼ X d þ Y d þ Zd ð27Þ

By introducing Eq. (27) into Eqs. (24), (25), and (26), we
obtain

wðaÞ1 ¼ X 3 þ X 2Y þ XY 2 þ Y 3 þ X 2Z

þ Y 2Z þ XZ2 þ YZ2 þ Z3 ð28Þ

wðcÞ1 ¼ X 3 þ X 2Y þ XY 2 þ Y 3 þ X 2Z þ 2XYZ

þ Y 2Z þ XZ2 þ YZ2 þ Z3; ð29Þ

wðbÞ1 ¼X 3 þ X 2Y þ XY 2 þ Y 3 þ X 2Z þ 2XYZ

þ Y 2Z þ XZ2 þ YZ2 þ Z3 ð30Þ
Compare these equations derived by the present proli-
gand approach with Eq. (7) derived by Pólya’s corona.
In particular, the term 2XYZ appearing in the right-hand
side of Eq. (29) stems from two modes of compensated
pairwise packing of R-CXYZ and S-CXYZ for an
enantiospheric orbit [1]. On the other hand, the term
2XYZ appearing in the right-hand side of Eq. (30)
represents a respective occupation by R-CXYZ or
S-CXYZ for a hemispheric orbit, although the same
term XYZ is used to represent R-CXYZ as well as
S-CXYZ.

3.2 Molecules derived from promolecules

Let Ĝ be a sum of coset representations of a point group
G, which governs a set D̂ of n̂ positions of a skeleton.
Suppose that the cycle structure of Ĝð2 ĜÞ is represented
by

ð1l1ðĜÞ2l2ðĜÞ � � � n̂ln̂ðĜÞÞ;

where
Pn̂

k¼1 klkðĜÞ ¼ n̂. Each position of D̂ is occu-
pied by an achiral or a chiral ligand selected from a
set of ligands enumerated by Eqs. (19), (20), and (21).
When k of ligands enumerated by Eq. (19) occupy k
equivalent positions of the skeleton (corresponding to
klkðĜÞ), the corresponding k of wðaÞ1 become transitive
to give wðaÞk. This holds true for wðcÞ1 and wðbÞ1. As a
result, we obtain the following inventories:
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wðaÞk ¼ 2CI-CFðĤ; $kdÞ � CI-CFðĤ0; bkdÞ; ð31Þ
wðcÞk ¼ CI-CFðĤ0; bkdÞ; ð32Þ
wðbÞk ¼ CI-CFðĤ0; bkdÞ; ð33Þ

where k represents a multiplicity factor, as described
previously. Since wðaÞk, wðcÞk, and wðbÞk are a kind of
extension of sphericity indices (ak, ck, and bk), they are
here called extended sphericity indices of k-cycles.
Note again that the equality between Eq. (32), and
Eq. (33) stems from the assumption due to Eqs. (17)
and (18).

The present treatment is based on the simplification
that ligands enumerated by Eqs. (11), and (12) are re-
garded as proligands, where their substitution is con-
trolled by the sphericity of an orbit contained in a
promolecule. The sphericity of an orbit is taken into
consideration in the form of extended sphericity indices,
i.e., wðaÞk for a homospheric k-cycle, wðcÞk for an enan-
tiospheric k-cycle, and wðbÞk for a hemispheric k-cycle.
Thereby, we define the CI-CF for a (pro)molecule of
Ĝ-symmetry as follows:

CI-CFðĜ; wð$ÞkÞ ¼
1

jĜj
X

Ĝ2Ĝ

wl1ðĜÞ
ð$Þ1 wl2ðĜÞ

ð$Þ2 � � �w
lnðĜÞ
ð$Þn ; ð34Þ

where wð$Þk is wðaÞk (Eq. 31) if Ĝ is an improper element
and k is odd, wð$Þk is wðcÞk (Eq. 32) if Ĝ is an improper
element and k is even, and wð$Þk is wðbÞk (Eq. 33) if Ĝ is a
proper element.

Theorem 2: Let us consider Ĝ for representing a skeleton
with n̂ positions, each of which is occupied by a ligand
generated from a ligand skeleton of Ĥ having n positions
(the maximum chiral subgroup: Ĥ0). There are in total nn̂
positions. Each position is occupied by an achiral or a
chiral ligand selected from a set of ligands,

X ¼ fx1; x2; . . . ; xm; p1; p2; . . . ; pm0 ; �p1; �p2; . . . ; �pm0 g;
where each xj represents an achiral ligand and each pair of
pj and �pj represents an enantiomeric pair of chiral ligands.
Consider isomers having h1 of x1; h2 of x2; . . . ; hm of xm;
h01 of p1; h

0
2 of p2; . . . ; h0n0 of pm0 ; and h001 of �p1; h002 of

�p2; . . . ; h00m0 of �pm0 ; where

½h� : h1 þ h2 þ � � � þ hm

þ h01 þ h02 þ � � � þ h0m0

þ h001 þ h002 þ � � � þ h00m0 ¼ nn̂: ð35Þ
Let the symbol Ah denote the number of isomers of such
isomers as having ½h� under the action of Ĝ, where achiral
isomers and enantiomeric pairs are enumerated A gener-
ating function for calculating Ah is represented by
X

½h�
Ahx

h1
1 x

h2
2 � � � xhm

m p
h01
1 p

h02
2 � � � p

h00
m0

m0 �p
h001
1 �ph002

2 � � � �p
h00m0
m0

¼ CI-CFðĜ; wð$ÞkÞ;

where the right-hand side is represented by Eq. (34), into
which Eqs. (31), (32) and (33) are introduced under the

presumption of pi = �pi. The ligand inventories (Eqs.16,
17, and 18) are finally introduced into the resulting
polymomial.

To show the versatility of theorem 2, let us continue
the example of tetramethylmethane. According to Eqs.
(31), (32), and (33), Eqs. (24), (25), and (26) are con-
verted into extended sphericity indices as a set of
inventories:

wðaÞk ¼ akc2k; ð37Þ

wðcÞk ¼
1

3
b3

k þ
2

3
b3k ; ð38Þ

wðbÞk ¼
1

3
b3k þ

2

3
b3k: ð39Þ

According to Eq. (34), the CI-CF for this case is
obtained as follows:

CI� CFðĜ;wð$ÞkÞ ¼
1

24
w4
ðbÞ1 þ

1

8
w2
ðbÞ2 þ

1

4
w2
ðaÞ1wðcÞ2

þ 1

3
wðbÞ1wðbÞ3 þ

1

4
wðcÞ4: ð40Þ

Compare this equation with Eq. (4) derived by Pólya’s
corona.

After introducing the extended sphericity indices
(Eqs. 37, 38, and 39) into Eq. (40), the ligand invertories
described in Eq. (27) are introduced into the resulting
polynomial, since we consider X , Y , and Z as achiral
ligands. Thereby, we obtain the following generating
function:

F ¼ ðX 12 þ Y 12 þ Z12Þ
þ ðX 11Y þ XY 11 þ X 11Z þ � � �Þ
þ 2ðX 10Y 2 þ X 2Y 10 þ X 10Z2 � � �Þ
þ 3ðX 9Y 3 þ X 3Y 9 þ X 9Z3 þ � � �Þ
þ 4ðX 8Y 4 þ X 4Y 8 þ X 8Z4 þ � � �Þ
þ 4ðX 7Y 5 þ X 5Y 7 þ X 7Z5 þ � � �Þ
þ 5ðX 6Y 6 þ X 6Z6 þ Y 6Z6Þ
þ 2ðX 10YZ þ XYZ10 þ XY 10ZÞ
þ 4ðX 9Y 2Z þ X 2Y 9Z þ X 9YZ2 þ � � �Þ
þ 6ðX 8Y 3Z þ XY 8Z3 þ X 3YZ8 þ � � �Þ
þ 10ðX 8Y 2Z2 þ X 2Y 8Z2 þ X 2Y 2Z8Þ
þ 9ðX 7Y 4Z þ X 4Y 7Z þ X 7YZ4 þ � � �Þ
þ 15ðX 3Y 7Z2 þ X 7Y 3Z2 þ X 7Y 2Z3 þ � � �Þ
þ 10ðX 6Y 5Z þ X 5Y 6Z þ X 6YZ5 þ � � �Þ
þ 22ðX 6Y 4Z2 þ X 4Y 6Z2 þ X 6Y 2Z4 þ � � �Þ
þ 24ðX 6Y 3Z3 þ X 3Y 6Z3 þ X 3Y 3Z6Þ
þ 22ðX 5Y 5Z2 þ X 5Y 2Z5 þ X 2Y 5Z5Þ
þ 30ðX 5Y 4Z3 þ X 4Y 5Z3 þ X 5Y 3Z4 þ � � �Þ
þ 39X 4Y 4Z4: ð41Þ

The coefficient of each term X xY yZz (xþ y þ z ¼ 12) in
Eq. (41) represents the number of isomers with x of X , y
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of Y , and z of Z. It should be noted that the numbers
collected in Eq. (41) were obtained by using the present
proligand approach.

4 Comparison between two approaches

In comparison with Pólya’s corona that uses a CI (such
as Eq. 41) and a single inventory (such as Eq. 3), the
present proligand approach uses a CI-CF (such as Eq.
41) and three inventories (such as Eqs. 37, 38, and 39).
This difference results in the difference of isomer
numbers, which is found by comparing the coefficient
of each term in Eq. (6) and the corresponding one in Eq.
(41).

To compare the two approaches, the factorization of
each term into four factors is informative, as shown for
the term X 5Y 5Z2 in Table 1. This term can be factorized
into 16 modes, each of which corresponds to a graph
enumerated in Eq. (6) of Pólya’s corona (16X 5Y 5Z2).

On the other hand, the present proligand approach
gives the coefficient 22 of X 5Y 5Z2 (Eq. 41), which is as-
cribed to the categorization of isomers collected in the
last column of Table 1.

To clarify the difference between the present proli-
gand approach and Pólya’s corona in detail, let us
examine the case of XY 2 � X 2Y � ðXYZÞ2, which cor-
responds to promolecules such as ABp�p, ABpp, and
ABpp . Note that XYZ corresponds to a chiral
proligand p or �p. Among the three isomers, two iso-
mers have been described in Fig. 1 (1 and 2). The
remaining one is a pair of enantiomers (4 and 5),
as depicted in Fig. 2. Note that each pair of enanti-
omers is counted once in the present proligand
approach.

This exhibits a sharp contrast to the fact that Polya’s
corona regards ABp�p (3 in Fig. 1), ABpp, and ABpp (3
in Fig. 2) as the same graph so as to be counted once, as
shown in Table 1.

Another difference between the present proligand
approach and Pólya’s corona appears in the isomer
numbers of the factorization X 2Z � X 2Y � Y 3 � XYZ (1
versus. 2 in Table 1), which corresponds to promolecules
such as ABCp (or ABC�p). According to the present
approach, the two isomers (6 and 7) are depicted in
Fig. 3, where an arbitrary enantiomer is selected from
each pair of enantiomers, since both 6 and 7 are chiral.

Table 1 Factorization of the
term X5 Y5 Z2 for tetra-
methylmethene

Factors Promolecule Isomer number due
to Pólya’s corona

Isomer number due to
the proligand approach

XZ2 · XY2 · X3 · Y3 ABCD 1 1
YZ2 · X2Y · X3 · Y3 ABCD 1 1
X2Z· Y2Z · X3 · Y3 ABCD 1 1
X2Z· Y2Z · XY2 · XY2 ABCD 1 1

(X2Z)2 · XY2 · Y3 A2BC 1 1
(Y2Z)2 · X2Y · X3 A2BC 1 1
(X2Y)2 · XY2 · Y2Z A2BC 1 1
(XY2)2 · X2Y · X2Z A2BC 1 1
(X2Y)2 · XZ2 · Y3 A2BC 1 1
(XY2)2 · YZ2 · X3 A2BC 1 1

(X2Y)2 · Y2Z· XYZ A2Bp 1 1
(XY2)2 · X2Z· XYZ A2Bp 1 1

X2Z · X2Y· Y3 · XYZ ABCp 1 2
Y2Z · XY2 · X3 · XYZ ABCp 1 2

XY2 · X2Y· (XYZ)2 ABp�p, ABp2 1 3
X3 · Y3 · (XYZ)2 ABp�p, ABp2 1 3

Total 16 22

Fig. 2. One pair of enantiomers for chemical structure (4 and 5)
versus one molecule for graph (the same as 3). For the symbols
used, see Fig. 1.
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Note again that a pair of enantiomers is counted once in
the present proligand approach. The two isomers (6 and
7) are in diastereomeric relationship.

In contrast, Pólya’s corona equalizes the two isomers
(6 and 7) so as to regard them as one graph (8), as
depicted in the bottom of Fig. 3.

5 Comparison with other approaches

The unit-subduced-CI (USCI) approach developed by
us [1] has been used to count derivatives of tetram-
ethylmethane [16], where the results have been item-
ized with respect to molecular formulas as well as to
point-group symmetries. The total number of each
molecular formula (X xY yZz) collected in Table 4 of
[16] is identical with the result collected in Eq. (41).
The USCI approach requires a mark table based on a
group-subgroup relationship, which is not always a
trivial thing, although it gives more detailed classifi-
cation of isomers.

The partial-CI method [1], which is an application of
the USCI approach, has been applied to the enumera-
tion of tetramethylmethane derivatives [17]. It has given
results equivalent to the USCI approach where it also
requires a mark table. Moreover, the paper systematic
enumeration of nonrigid isomers with given ligand
symmetries has been discussed [17].

The characteristic-monomial method [18,19,20], has
been applied to the enumeration of tetramethylmethane
derivatives [21]. This method is based on linear repre-
sentations and provides a simple method for enumera-
tion of nonrigid isomers, where ligand inventories
equivalent to Eqs. (28), (29), and (30) have been alter-
natively obtained.

As compared with these methods, one of the merits of
the present proligand approach is that it requires
knowldge on the permutation of each element. This
merit is more remarkable when a detailed enumeration
with respect to point-group symmetries is not required.

6 Conclusions

In order to enumerate nonrigid isomers, we have
proposed the proligand approach, in which a promol-
ecule is regarded as a skeleton having proligands and a
molecule is produced by replacing each proligand by
ligands. This treatment has provided a new formulation
for a stereochemical extension of Pólya’s coronas, where
extended sphericity indices of k-cycles have been defined
according to the enantiospheric, homospheric, or hemi-
spheric nature of each k-cycle. Thereby, CIs-CF have
been defined so as to enumerate nonrigid stereoisomers
with chiral and achiral ligands. We can conclude that
Pólya’s corona is concerned with graphs, but not with
chemical structures, where it is incapable of treating
chiral ligands properly.
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